Биология и медицина
К поверхностным структурам бактериальной клетки относятся также ворсинки
(фимбрии, пили) ( рис. 4 , 6). Их насчитывается от нескольких единиц до нескольких тысяч на клетку.
Эти структуры не имеют отношения к движению бактерий и обнаружены у
подвижных и неподвижных форм.
Ворсинки построены из одного вида белка – пилина – и представляют собой прямые белковые цилиндры, отходящие от поверхности
клетки. Они, как правило, тоньше жгутиков (диаметр – 5-10 нм, длина 0,2-2,0
мкм), расположены перитрихиально или полярно. Больше всего сведений имеется
о ворсинках Е. coli . У этой бактерии описаны ворсинки общего типа и половые.
Ворсинки общего типа придают бактериям свойство гидрофобности,
обеспечивают их прикрепление к клеткам растений, грибов и неорганическим
частицам, принимают участие в транспорте метаболитов. Через ворсинки в
клетку могут проникать вирусы .
Наиболее хорошо изучены половые ворсинки, или F-пили, принимающие участие
в половом процессе бактерий.
F-пили необходимы клетке-донору для
обеспечения контакта между ней и реципиентом и в качестве конъюгационного
тоннеля, по которому происходит передача ДНК. Ворсинки нельзя считать
обязательной клеточной структурой, так как и без них бактерии хорошо растут
и размножаются.
Фимбрии (пили) – нитевидные белковые органеллы, покрывающих всю
поверхность бактериальной клетки – антигены фактора колонизации . Эти тонкие
структуры позволяют бактерии прикрепляться к эпителиальным клеткам и
препятствуют ее захвату нейтрофилами
Фимбрии состоят из множества
одинаковых белковых субъединиц.
Эта субъединица называется пилином (молекулярная масса
17000-30000). В составе пилина
есть консервативные и вариабельные участки. Перестройки хромосом, ведущие к
экспрессии любого из множества неактивных генов пилина, сопровождаются
изменениями антигенного состава фимбрий.
При электронной микроскопии
фимбрии выглядят как похожие на волоски выросты, проникающие через наружную
мембрану. Они могут располагаться на одном конце клетки либо более
равномерно по всей ее поверхности. У отдельной клетки может быть несколько
сотен фимбрий, которые выполняют различные функции.
У некоторых фимбрий
(например, у дигалактозидсвязывающих фимбрий Escherichia coli ) на апикальном
конце находятся специальные белки, играющие важную роль во взаимодействии с
рецепторами клеток.
Считается, что главная функция фимбрий –
обеспечение фиксации бактерий в тканях. Адгезия микробная: специфичность тканевая и
видоваяАдгезия микробная:
специфичность тканевая и видовая
Ссылки:
Все ссылки
Источник: http://medbiol.ru/medbiol/microbiol/00041faa.htm
Задача 2. ОХАРАКТЕРИЗОВАТЬ СТРОЕНИЕ И ЗНАЧЕНИЕ ВОРСИНОК И ВКЛЮЧЕНИЙ
Для этого надо знать:
1. Ворсинки или фимбрии (пили) – нитевидные поверхностные образования белковой природы, более тонкие и короткие, чем жгутики (3-20 нм х 0,3-10 мкм). Они состоят из белка пилина.
2. Выделяют фимбрии разного типа. Фимбрии общего типа многочисленны (100-200) и покрывают всю поверхность клетки; они ответственны за адгезию, т.е. прикрепление бактерий к субстрату, в том числе к поражаемым клеткам человека и животных, что имеет значение в проявлении патогенного действия.
Имеются фимбрии, ответственные за питание, водно-солевой обмен. Термин “пили” применяется чаще для обозначения особых фимбрий – половых или конъюгационных пилей (F-пилей).
Эти пили образуются у мужских половых клеток-доноров, которые содержат трансмиссивные плазмиды (F-плазмиды) и участвуют в конъюгации.
3.
В цитоплазме бактериальной клетки могут быть различные включения: полисахариды (гликоген, гранулеза), поли-b-оксимасляная кислота, полифосфаты (волютин), кристаллы солей щавелевой кислоты, углекислой извести; у серобактерий обнаруживаются капельки серы. Включения накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для питания и энергетических потребностей.
Включения имеют отличающийся от цитоплазмы химический состав и окрашиваются в иную окраску. Благодаря разнице в плотности они видны и при микроскопии неокрашенных клеток: жир виден в клетках в виде блестящих ярких капелек.
4. Волютин –полиметафосфат, запасное питательное вещество азотистого обмена. Содержится в виде зерен или капель (в дисперсном состоянии). Волютин встречается в клетках многих бактерий и большинства дрожжей.
Зерна волютина окрашиваются темнее цитоплазмы или избирательно принимают иную окраску, чем цитоплазма (явление метахромазии). На этом основана окраска метиленовым синим: зерна волютина – красно-фиолетовые; цитоплазма – голубая.
Выявление зерен волютина, расположенных на концах клетки у дифтерийных палочек, используется как важный дифференциально-диагностический признак. Они выявляются при окраске по методу Нейссера. Зерна имеют щелочную реакцию, избирательно воспринимают ацетат синьки и окрашиваются в темно-синий, почти черный цвет, а цитоплазма – в желтый цвет.
5. Гликоген (полимер глюкозы) и гранулеза (крахмалоподобный полисахарид) являются резервом углеводного питания клетки, энергетическим материалом для его развития.
Включения гликогена чаще всего обнаруживаются в клетках дрожжей и спорообразующих бактерий, а гранулеза – в клетках маслянокислых бактерий.
“Глыбки” гликогена окрашиваются раствором Люголя в красно-бурый цвет, а гранулеза – серо-синий цвет.
6. Химический состав липидов и их комплексов весьма сложный и многообразный, широко варьирует в зависимости от видовой специфичности, условий питания и возраста микробной культуры. Обилие жировых веществ характерно для старых форм, для культур, поврежденных различными физико-химическими факторами или развивающихся в неблагоприятных условиях.
Свободные жиры содержатся в клетке в виде жировых капель или липидных гранул из нейтральных жиров и поли-b-оксимасляной кислоты. Они окрашиваются растворами судана III в красно-оранжевый цвет. Пары осмиевой кислоты окрашивают жировые капли в черный цвет, цитоплазма остается бесцветной.
Задача 3. ОБЪЯСНИТЬ СУЩНОСТЬ, ЗНАЧЕНИЕ И ТЕХНИКУ ОКРАСКИ ПО ЦИЛЮ-НИЛЬСЕНУ.
Для этого надо знать:
1. Бактерии, содержащие большое количество жиро- и воскоподобных веществ, а также миколовую кислоту в клеточной стенке и цитоплазме (туберкулезные и лепрозные палочки), являются кислотоустойчивыми и не могут быть окрашены простыми методами. Их окрашивают по методу Циля-Нильсена.
2. При окраске бактерий по методу Циля-Нильсена используют концентрированные растворы, содержащие протравы (5 % карболовый фуксин Циля) и ведут окраску при подогревании. Карболовая кислота разрыхляет клеточную стенку и повышает ее тинкториальные свойства.
Высокая концентрация красителя и нагревание усиливают реакцию его взаимодействия с миколовой кислотой. Затем препарат обесцвечивают 5 % раствором серной кислоты и докрашивают метиленовым синим по Леффлеру. Кислотоустойчивые бактерии окрашиваются в красный цвет (цвет фуксина), т.к.
миколовая кислота вступает во взаимодействие с карболовым фуксином. В результате краска фиксируется в микробной клетке, поэтому кислотоустойчивые палочки не обесцвечиваются серной кислотой. Остальные бактерии обесцвечиваются и докрашиваются в синий цвет метиленовым синим.
Благодаря этому кислотоустойчивые бактерии могут быть дифференцированы от других.
3.
Техника окраски по Цилю-Нильсену. Фиксированный мазок покрывают фильтровальной бумагой, на которую наливают карболовый фуксин Циля. Затем мазок подогревают над пламенем горелки до появления паров. Добавляют новую порцию красителя и повторяют манипуляцию в течение 3-5 минут. Снимают бумажку пинцетом и после охлаждения до комнатной температуры тщательно промывают мазок водой. Обесцвечивают мазок 5 % раствором серной кислоты, опуская в него предметное стекло на 20-30 минут. Затем препарат тщательно промывают водой.
В течение 5 минут окрашивают раствором метиленового синего по Леффлеру, промывают водой и высушивают фильтровальной бумагой.
Источник: https://studopedia.net/5_7785_zadacha–oharakterizovat-stroenie-i-znachenie-vorsinok-i-vklyucheniy.html
Жгутики, фимбрии и пили (ворсинки)
Структуры, определяющие движение бактерий в окружающей среде.
У палочковидных бактерий жгутики могут прикрепляться полярно или латерально. Жгутик вращается с частотой 40-60 об/сек (сама клетка при этом вращается в обратном направлении с 1/3 от этой скорости), обеспечивая поступательное движение клетки со скоростью 16-100 мкм/сек.
Жгутик представляет собой относительно жесткую спиральную нить, переходящую в утолщенную структуру – крюк. Нить с помощью крюка прикрепляется к ЦПМ (место прикрепления называется базальным телом). У большинства бактерий нить состоит только из одного белка – флагеллина (белковые субъединицы уложены по спирали, внутри которой проходит полый канал).
Жгутики позволяют бактерии активно перемещаться в направлении, необходимом для клетки (таксис): к питательным веществам (хемотаксис), свету (фототаксис), теплу (термотаксис), ориентация в магнитном поле (магнитотаксис), вискозитаксис и т.д.
Для каждого организма все химические вещества могут быть поделены на две категории: аттрактанты (вещества, привлекающие бактерий) и репелленты (отпугивающие их). Аттрактантами чаще всего выступают пищевые вещества, это могут быть: сахара, аминокислоты, витамины и др., реппелентами – ядовитые вещества.
Длинные тонкие волоски на поверхности клетки называют фимбриями (ворсинками). Они также относятся к поверхностным структурам. Их может насчитываться до нескольких тысяч на клетку. Построены из белка пилина.
Эти структуры не имеют отношения к движению и обеспечивают прикрепление бактерий к клеткам растений, грибов, неорганическим частицам, принимают участие в транспорте веществ.
Через ворсинку в клетку могут проникать вирусы. Некоторые ворсинки или F-пили, принимают участие в половом процессе бактерий (коньюгации).
Они создают как бы тоннель, по которому от одной клетке к другой передается ДНК (плазмидная).
Пили нельзя считать обязательными структурами, такт как без них бактерии хорошо растут и размножаются.
Мезосомы
По структуре и функциям ЦПМ бактерий не отличается от мембран эукариотных клеток.
У прокариот, ЦПМ образует впячивания, получившие название мезосом. Они могут быть пластинчатыми, иметь форму пузырьков или трубочек.
Функции
1. Мезосомы увеличивают рабочую поверхность мембраны, на которой происходит синтез биополимеров, АТФ, фотосинтез и пр. (поскольку специальных мембранных органелл для этого в бактериальной клетке нет). Мезосомы – «примитивные органеллы».
2. Мезосомы могут играть роль в репликации ДНК и расхождении хромосомы.
Нуклеоид
Несмотря на отсутствие в клетках прокариот ядра, ДНК бактерий локализована в ограниченном участке цитоплазмы нуклеоида.
Вся генетическая информация прокариот содержится в одной молекуле ДНК, имеющей форму кольца – бактериальной хромосомы. Длина молекулы в развернутом виде может составлять более 1 мм, т.е. почти в 1000 раз превышать длину бактериальной клетки.
ДНК прокариот построена также, как и у эукариот (дезоксирибоза, фосфорная кислота и азотистые основания: два пуриновых (аденин и гуанин) и два пиримидиновых (цитозин и тимин)).
Делению клеток также предшествует удвоение ДНК (репликация). Деление молекул ДНК идет по полуконсервативному механизму (в ДНК дочерней клетки оказывается лишь одна половина материнской ДНК).
ПлазмидыМногие бактерии наряду с хромосомной ДНК содержат и дополнительную, тоже представленную двойной спиралью, замкнутой в кольцо. Число их может колебаться от 1 до 38 на клетку. Плазмиды не являются необходимыми для жизни бактерий.
Они часто кодируют признаки, полезные для бактериальной клетки (устойчивость к антибиотикам, синтез антибиотиков, способность разрушать и использовать некоторые вещества). Определенные плазмиды могут участвовать в половом процессе бактерий.
Бактерии способны обмениваться такими плазмидами, приобретая новые свойства (посредством контакта через половые пили).
Дата добавления: 2016-07-05; просмотров: 2049; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник: https://poznayka.org/s28896t1.html
Биология для студентов – 11. Жгутики, фимбрии бактерий. Строение, функции, механизм движения
На клеточной поверхности многих прокариот имеются структуры, определяющие способность клетки к движению в жидкой среде. Это – жгутики.
Их число, размеры, расположение, как правило, являются признаками, постоянными для определенного вида, и поэтому учитываются при систематике прокариот.
Однако накапливаются данные о том, что количество и расположение жгутиков у одного и того же вида могут в значительной степени определяться условиями культивирования и стадией жизненного цикла, и, следовательно, не стоит переоценивать таксономическое значение этого признака.
Если жгутики находятся у полюсов или в полярной области клетки, говорят об их полярном или субполярном расположении, если вдоль боковой поверхности, говорят о латеральном расположении.
Жгутики представляют собой длинные отростки, которые отходят от одного (монотрихи, лофотрихи) или обоих (амфитрихи) полюсов бактериальной клетки либо распределены по всей ее поверхности (перитрихи).
Как и фимбрий, жгутики состоят из полимеризованных или плотно уложенных белковых субъединиц, которые придают им жесткую спиралеобразную форму и обусловливают серологические отличия разных видов бактерий.
У некоторых спирохет, например, Treponema pallidum и Borrelia burgdorferi, продольно расположенные жгутики собраны в осевую нить. Благодаря этому образованию, спирально охватывающему клетку, спирохеты могут активно передвигаться при помощи вращательных движений. Некоторые бактерии могут перемещаться по субстрату без видимых двигательных структур.
В зависимости от числа жгутиков и их локализации на поверхности клетки различают:
- монополярные монотрихи(один жгутик прикреплен к одному полюсу клетки;
- монополярные политрихи(пучок жгутиков расположен на одном полюсе клетки), биполярные политрихи (на каждом полюсе – по пучку жгутиков;
- перитрихи(многочисленные жгутики расположены по всей поверхности клетки или вдоль ее боковой поверхности.
В последнем случае число жгутиков может достигать 1000 на клетку.
Обычная толщина жгутика – 10-20 нм, длина – от 3 до 15 мкм. У некоторых бактерий длина жгутика может на порядок превышать диаметр клетки. Как правило, полярные жгутики более толстые, чем перитрихиальные.
Жгутик представляет собой относительную жесткую спираль, обычно закрученную против часовой стрелки. Вращение жгутика также осуществляется против часовой стрелки с частотой от 40 до 60 об/с, что вызывает вращение клетки, но в противоположном направлении.
Поскольку клетка намного массивнее жгутика, она вращается со значительно меньшей скоростью – порядка 12-14 об/мин.
Вращательное движение жгутика преобразуется также в поступательное движение клетки, скорость которого в жидкой среде для разных видов бактерий составляет от 16 до 100 мкм/с.
Изучение строения жгутика под электронным микроскопом обнаружило, что он состоит из трех частей. Основную массу жгутика составляет длинная спиральная нить (фибрилла), у поверхности клеточной стенки переходящая в утолщенную изогнутую структуру – крюк. Нить с помощью крюка прикреплена к базальному телу, вмонтированному в ЦПМ и клеточную стенку.
Белковые субъединицы уложены в виде спирали, внутри которой проходит полый канал. Наращивание жгутика происходит с дистального конца, куда субъединицы поступают по внутреннему каналу.
У некоторых видов жгутик снаружи дополнительно покрыт чехлом особого химического строения или же являющимся продолжением клеточной стенки и, вероятно, построенным из того же материала.
К поверхностным структурам бактериальной клетки относятся также фимбрии (пили, реснички, ворсинки) — жесткие прямые полые нити из белка пилина, локализованые на КС. Фимбрии короче и тоньше жгутиков: их диаметр 3–20 нм, длина 0,2–10,0 мкм.
Фимбрии — необязательная клеточная структура, так как и без них бактерии хорошо растут и размножаются. В отличие от жгутиков, фимбрии не выполняют двигательную функцию и обнаружены у подвижных и неподвижных форм. По своему функциональному назначению фимбрии подразделяются на 2 типа. Термин «фимбрии» чаще используется для обозначения общих пили, а термин «пили» — для обозначения секс-пили.
Фимбрии 1 (общего) типа имеются у большинства бактерий. Они покрывают всю поверхность клетки, располагаются перитрихиально или полярно. Количество фимбрий велико — от нескольких сотен до нескольких тысяч на одну бактериальную клетку. Синтез фимбрий контролируется бактериальной хромосомой, утрата фимбрий приводит к их новому синтезу.
Покрывая всю клетку, фимбрии создают ворсистую поверхность. Иногда фимбрии сливаются в комки, придавая неопрятный вид клетке; в других случаях поверхность клеток покрыта войлокообразным чехлом, состоящим из сплетений тонких нитей.
Пили 2 типа (синонимы: конъюгативные, половые, секс-пили) образуются только мужскими клетками-донорами, содержащими трансмиссивные плазмиды (F, R, Col), в ограниченном количестве (1–4 на клетку), имеют терминальные вздутия.
Функции фимбрий.
Фимбрии обоих типов:
- Обладают антигенной активностью.
- На них адсорбируются бактериофаги (специфические вирусы бактерий).
- Адгезивная функция: обеспечивают прикрепление бактерий к клеткам слизистых оболочек организма хозяина и к другим субстратам (клеткам растений, грибов, неорганическим частицам и органическим остаткам).
- Механическая защита бактериальной клетки. Придают бактериям свойство гидрофобности и способствуют объединению клеток в группы.
- Увеличивают всасывательную поверхность клетки бактерий, участвуют в процессах питания, водно-солевого обмена и в транспорте метаболитов.
Половые пили: F–пили обеспечивают конъюгацию — передачу части генетического материала от донорской клетки к реципиентной.
Источник: https://vseobiology.ru/mikrobiologiya/1766-11-zhgutiki-fimbrii-bakterij-stroenie-funktsii-mekhanizm-dvizheniya
Жгутики бактерий. Строение, химический состав, расположение. Методы выявления. Фимбрии и F – пили
Жгутик — спирально изогнутая полая нить, образованная субъединицами флагеллина, поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. бактериальный жгутик имеет толщину 10—20 нм и длину 3—15 мкм, он пассивно вращается расположенным в мембране мотором
Жгутики бактерий состоят из трёх субструктур:
• Филамент (фибрилла, пропеллер) — полая белковая нить толщиной 10—20 нм и длиной 3—15 мкм, состоящая из флагеллина, субъединицы которого уложены по спирали. Полость внутри используется при синтезе жгутика — он происходит в направлении от цитоплазматической мембраны. По полости к собираемому в настоящий момент участку переносятся субъединицы флагеллина.
• Крюк — более толстое, чем филамент (20—45 нм), белковое (не флагеллиновое) образование.
• Базальное тело (трансмембранный мотор)
Расположение жгутиков — характерный признак, имеющий таксономическое значение. Варианты расположения жгутиков приведены на рис. 4-1. У некоторых бактерий жгутики расположены по всей поверхности клеточной стенки (например, у бактерий рода Proteus), такие бактерии известны как перитрихи .
Некоторые бактерии снабжены только одним толстым жгутиком (например, представители рода Vibrio), они известны как монотрихи. Политрихи — бактерии, имеющие одиночный по виду жгутик, образованный пучком из 2-50 жгутиков. Полярные жгутики прикреплены к одному или обоим концам бактерии.
Монополярно-политрихиальное расположение жгутиков имеют лофотрихи , к ним, например, относят представителей рода Pseudomonas. Биполярно-политрихиальное жгутикование имеют амфитрихи (например, бактерии рода Spirillum).
Окраска жгутиков методом Леффлера.
В основе выявления жгутиков лежит осаждение на них красителя, чем достигается увеличение толщины жгутиков и уменьшение их прозрачности.
• Препарат готовят из 16-18 часовой культуры, которую вносят в 1-2 мл стерильной водопроводной воды до получения тонкой опалесцирующей взвеси.
• Через 20 мин капля суспензии наносят на поверхность чистого обезжиренного стекла и высушивают на воздухе.
• Обрабатывают в течение 15 мин протравой следующего состава: 1 мл насыщенного спиртового раствора основного фуксина, 10 мл 25% водного раствора таннина, 5 мл насыщенного водного раствора сернокислого железа.
• Препарат промывают водой.
• Окрашивают карболовым фуксином Циля, разведенным водой в соотношении 1:1, в течение 5 мин при легком подогревании.
• Промывают водой, высушивают.
При микроскопии готового препарата жгутики видны как тонкие нитевидные структуры.
Окраска по Романовскому — Гимзе
цитологический метод окраски простейших, бактерий, клеточных структур и тканей различных видов (в том числе крови) при световой микроскопии. Предложена в 1904 году Густавом Гимзой.
В авторской версии название красителя — «Giemsasche Lözung für die Romanowsky färbung» (Раствор Гимзы для окраски по Романовскому) Окрашивает ацидофильные образования в различные оттенки красного цвета, базофильные — в цвета от пурпурного до синего.
Методика окраски. Мазки, фиксированные в метиловом спирте, окрашивают раствором (1 мл готовой жидкой краски + 2 мл основного буферного раствора + 47 мл дистиллированной воды) в течение 40—120 мин (продолжительность окрашивания подбирают эмпирически).
Пользуются фосфатным буфером, но рН буфера зависит от вида мазка: для мазка костного мозга — 5,8 — 6,0, для мазка крови — 6,4 — 6,5, для выявления простейших — 6,8, малярийного плазмодия — 7,0 — 7,2. Ополаскивают в дистиллированной воде, высушивают и исследуют при иммерсии.
Бактерии окрашиваются в фиолетово-красный цвет, цитоплазма клеток — в голубой, ядра — в красный. При окрашивании простейших их цитоплазма приобретает голубой цвет, а ядра — красно-фиолетовый.
Фимбрии (от лат. firnbriac – бахрома), длинные, тонкие, прямые выросты, состоящие из гидрофобного белка и находящиеся в большом количестве (иногда до нескольких тысяч) на поверхности клеток грамотрицательных бактерий. Длина Ф. – до 12 мкм, толщина – не более 100 Å.
Они значительно тоньше и короче жгутиков. “Мужские” клетки бактерий (доноры) могут иметь 1–3 половые Ф. (пили), образующие между ними и “женскими” клетками (реципиентами) полые мостики, через которые при конъюгации бактерий передаётся ДНК. Ф.
могут быть как у подвижных, так и у неподвижных бактерий; возникают обычно из базального тельца, находящегося в цитоплазматической мембране, и проходят через клеточную стенку наружу. Ф.
придают бактериальной клетке способность неспецифически “прилипать” к плотной поверхности клеток, тканей и т.п.
F-пили бактерий , или «секс-пили», — жёсткие цилиндрические образования, участвующие в конъюгации бактерий. Пили впервые обнаружены у Escherichia coli K12, то есть у штаммов, содержащих F-фактор ( (англ. fertility плодовитость; син.: половой фактор бактерий, секс-фактор) — плазмида, определяющая конъюгационные свойства мужских штаммов бактерий.
). Обычно клетка снабжена 1-2 пилями, имеющими вид полых белковых трубочек длиной 0,5-10 мкм; нередко они имеют шаровидное утолщение на конце. Большинство F-пилей образует специфический белок — пилин. Образование пилей кодируют плазмиды. Их идентифицируют с помощью донорспецифических бактериофагов, адсорбирующихся на пилях и лизирующих клетки.
Источник: https://students-library.com/library/read/29302-zgutiki-bakterij-stroenie-himiceskij-sostav-raspolozenie-metody-vyavlenia-fimbrii-i-f-pili
Ворсинки (микробиология)
Ворсинки (англ., Лат. Pili, единственное pilus) или фимбрии (fimbriae) — поверхностные структуры, похожие на волосы на поверхности клетки и найдены во многих бактерий и некоторых архей.
Термины «ворсинки» и «фимбрии» часто используются равнозначно, хотя некоторые исследователи резервируют термин «ворсинки» для ссылки на половые ворсинки (однако, такое использование может считаться устаревшим).
Все ворсинки построены из полимерных цепочек глобулярного белка пилину, хотя это только общее название, которое ссылается на целый класс белков. В классификации ворсинок нет четкой системы.
Четко выделены только несколько типов ворсинок: ворсинки I типа, ворсинки IV типа и половые ворсинки, хотя, кажется, они далеко не покрывают все возможные типы.
Ворсинки / фимбрии 1 типа
Восинкы I типа — кратчайшие, волоссяподибни структуры, обычно расположены перитрихально, то есть на всем теле, неподвижные и очень гибкие. Эти ворсинки основном используются для прикрепления к поверхности и создания биофильмы.
Прикреплению бактерий к поверхности очень важно для колонизации новых территорий и защиты от хищников и неблагоприятных химических агентов. мутантные болезнетворные бактерии, которые не имеют ворсинок, не могут прикрепляться к поверхности тела человека, и поэтому не могут вызвать болезни.
Некоторые ворсинки могут содержать лектины, которые необходимы для прикрепления к другим клеткам определенного типа, так как они могут розпознаваты определенные олигосахариды на поверхности этих целевых клеток. Другие ворсинки могут быть связаны с компонентами внеклеточного матрицы.
Ворсинки I типа найдены как среди грамотрицательных, так и среди грамположительных бактерий, в последний субъединицы пилину ковалентно связаны.
Половые ворсинки
Половые ворсинки (для них термин «фимбрии» обычно не применяется) используются в бактериальной конъюгации. Эти ворсинки имеют обычно от 9 до 10 нм в диаметре и довольно жесткие. Они соединяют бактерию с другой бактерией, конечно того же вида, и строят мост между цитоплазме этих клеток.
Этот процесс позволяет передачу плазмид и иногда бактериальной ДНК от бактерий с ворсинками (доноров) в восприимчивых бактерий. Обмен плазмид может предоставить новые функции бактерии, например резистентность. Через этот механизм некоторые выгодные генетические черты могут распространяться популяцией бактерий.
Не все бактерии обладают способностью создавать половые ворсинки, хотя многие виды и делают это. В одной бактерии может существовать до десяти половых ворсинок.
Некоторые бактериальные вирусы (бактериофаги) прикрепляются к половым ворсинок в начале цикла размножения.
Несмотря на свое название, «половые ворсинки» не имеют ничего общего с половым размножением или спариванием, и не является бактериальным эквивалентом пениса; хотя такое неправильное употребление термина и используются в популярной литературе.
Ворсинки IV типа
Эти ворсинки участвуют в подвижности бактерий. Они протягиваются вперед на 5 микрон (иногда до 15 микрон), прикрепляются к поверхности и втягиваются обратно, создавая очень большую силу в 80 пН, что влечет бактерию вперед. Эти ворсинки расположены исключительно на полюсах бактерий и достаточно жесткие. Они найдены во многих несвязанных родах бактерий: Neisseria, Vibrio, Myxococcus и других.
Источник: http://info-farm.ru/alphabet_index/v/vorsinki-mikrobiologiya.html
Химический состав, организация и функции поверхностных структур бактериальной клетки: капсулы, чехлы, фимбрии, пили
Поверхностные структуры –структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.
Многие микроорганизмы продуцируют на поверхности клетки слизистое вещество. В зависимости от толщины слизистого слоя принято различать микрокапсулу,макрокапсулу, слизь.
Микрокапсула–толщиной до 0,2 мкм, прочно связана с клеточной стенкой. Макрокапсулапредставлена слоем слизи толщиной более 0,2 мкм.
Слизь–вещество, которое окружает клетку, имеет аморфный вид, легко отделяется от поверхности клетки, по толщине превосходит диаметр клетки.
Все они не являются обязательными структурами бактериальной клетки.
Химическая природа капсул и слизи: полисахариды, полипептиды, реже – целлюлоза.
Капсулы и слизи выполняют следующие функции: защитную – предохраняют клетку от действия неблагоприятных факторов внешней среды; создают дополнительный осмотический барьер; способны выступать в качестве фактора вирулентности; служат барьером для бактериофагов; являются источником запасных питательных веществ; объединяют клетки в цепочки, колонии; обеспечивают прикрепление клеток к субстрату.
Чехлы имеют сложную тонкую структуру; в их составе выявляют несколько слоев разного строения, имеют сложный химический состав.
Между капсулами, чехлами и слизистыми слоями обнаружено много переходных форм, что не позволяет точно отличить их друг от друга.
Ворсинки, или фимбрии, – поверхностные структуры, которые состоят из белка пилина и не выполняют функцию движения. По размерам они короче и тоньше жгутиков. Число фимбрий на поверхности клетки колеблется от 1–2 до нескольких тысяч. Различают два типа фимбрий: общие и специфические.
Фимбрии общего типавыполняют функцию прикрепления клетки к поверхности субстрата. Специфические ворсинки – половые пили, обнаруженные у клеток так называемых доноров. Они имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм.
· Поверхностные структуры –это структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.
· Химическая природа капсул и слизи:
– В большинстве случаев капсула образована полисахаридами (например, у бактерий вида Streptococcusmutans, некоторых бактерий родов Xanthomonas, Klebsiella, Corynebacteriumи др.).
– Капсулы же других видов бактерий состоят из полипептидов, представленных полимерами, в которых содержится много D- и L-форм глутаминовой кислоты. Примером такой капсулы является капсула бактерий Bacillusanthracis.
– Для ряда бактерий выявлена способность синтезировать капсулу, состоящую из волокон целлюлозы. Так построена капсула у бактерий Sarcinaventriculi.
– Слизи по химической природе являются полисахаридами. Особенно обильное их образование наблюдается у многих микроорганизмов при их росте на среде с сахарозой. Например, молочнокислые бактерии Leuconostocmesenteroidesбыстро превращают раствор, содержащий тростниковый сахар, в декстрановый гель, за что их на сахарных заводах называют «бактериями лягушачьей икры».
Рис. 1 – Капсулы пурпурной серобактерии (А) и азотфиксирующей бактерии (Б); клетки суспензированы в туши
· Практическое значение капсул и слизей: Капсульные полисахариды, образуемые бактериями, имеют большое практическое значение.
Так, ксантан, внеклеточный полисахарид бактерий Xanthomonascampestris, используется в составе смазок, при добыче нефти, в пищевой промышленности для улучшения вкусовых свойств консервированных и замороженных продуктов, соусов, кремов, а также в изготовлении косметики.
· Чехлы обычно имеют и более сложный химический состав. Например, чехол бактерий Sphaerotilisnatansсодержит 36 % углеводов, 11 – гексозамина, 27 – белков, 5,2 – липидов и 0,5 – фосфора. Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами.
Источник: https://cyberpedia.su/13x17fca.html